On Regular Courant Algebroids
نویسندگان
چکیده
For any regular Courant algebroid, we construct a characteristic class à la Chern-Weil. This intrinsic invariant of the Courant algebroid is a degree-3 class in its naive cohomology. When the Courant algebroid is exact, it reduces to the Ševera class (in H DR(M)). On the other hand, when the Courant algebroid is a quadratic Lie algebra g, it coincides with the class of the Cartan 3-form (in H(g)). We also give a complete classification of regular Courant algebroids and discuss its relation to the characteristic class.
منابع مشابه
Transitive Courant algebroids
We express any Courant algebroid bracket by means of a metric connection, and construct a Courant algebroid structure on any orthogonal, Whitney sum E⊕C where E is a given Courant algebroid and C is a flat, pseudo-Euclidean vector bundle. Then, we establish the general expression of the bracket of a transitive Courant algebroid, that is, a Courant algebroid with a surjective anchor, and describ...
متن کاملAnchored Vector Bundles and Algebroids
Inspired by recent works of Zang Liu, Alan Weinstein and Ping Xu, we introduce the notions of CC algebroids and non asymmetric Courant algebroids and study these structures. It is shown that CC algebroids of rank greater than 3 are the same as Courant algebroids up to a constant factor, though the definition of CC algebroids is much simpler than that of Courant algebroids,requiring only 2 axiom...
متن کاملCourant Algebroids from Categorified Symplectic Geometry: Draft Version
In categorified symplectic geometry, one studies the categorified algebraic and geometric structures that naturally arise on manifolds equipped with a closed non-degenerate n + 1-form. The case relevant to classical string theory is when n = 2 and is called ‘2-plectic geometry’. Just as the Poisson bracket makes the smooth functions on a symplectic manifold into a Lie algebra, there is a Lie 2-...
متن کاملCourant-Nijenhuis tensors and generalized geometries
Nijenhuis tensors N on Courant algebroids compatible with the pairing are studied. This compatibility condition turns out to be of the form N + N = λI for irreducible Courant algebroids, in particular for the extended tangent bundles T M = TM ⊕ TM . It is proved that compatible Nijenhuis tensors on irreducible Courant algebroids must satisfy quadratic relations N −λN + γI = 0, so that the corre...
متن کاملThe graded Jacobi algebras and (co)homology
Jacobi algebroids (i.e. a ‘Jacobi versions’ of Lie algebroids) are studied in the context of graded Jacobi brackets on graded commutative algebras. This unifies varios concepts of graded Lie structures in geometry and physics. A method of describing such structures by classical Lie algebroids via certain gauging (in the spirit of E.Witten’s gauging of exterior derivative) is developed. One cons...
متن کامل